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Abstract
This paper investigates the suitability of using Generative Ad-
versarial Networks (GANs) to generate stable structures for
the physics-based puzzle game Angry Birds. While previous
applications of GANs for level generation have been mostly
limited to tile-based representations, this paper explores their
suitability for creating stable structures made from multiple
smaller blocks. This includes a detailed encoding/decoding
process for converting between Angry Birds level descrip-
tions and a suitable grid-based representation, as well as uti-
lizing state-of-the-art GAN architectures and training meth-
ods to produce new structure designs. Our results show that
GANs can be successfully applied to generate a varied range
of complex and stable Angry Birds structures.

Introduction
Procedural Content Generation (PCG), which describes the
creation of content through algorithmic means, has become
an increasingly prominent aspect of video game develop-
ment (Amato 2017). In the same timeframe as conventional
PCG techniques were being researched, the number of ap-
plications utilizing Machine Learning (ML) approaches has
also increased, with techniques such as Neural Networks and
Deep Learning receiving a large amount of attention (Good-
fellow, Bengio, and Courville 2016). Consequently, the use
of ML approaches for content generation, under the abbre-
viation PCGML, has become an area of significant research
interest (Summerville et al. 2017).

While many different types of ML algorithms have been
used to generate content, one of the most promising ap-
proaches in recent years has been the use of Generative Ad-
versarial Networks (GANs) (Gui et al. 2021; Jabbar, Li, and
Omar 2021; Saxena and Cao 2020). A GAN is the construct
of two adversarial networks, in which one network gener-
ates new content and the second network discriminates the
generated content to differentiate between real and gener-
ated (Goodfellow et al. 2014). While the primary applica-
tion of GANs has largely been for image and video synthesis
(Huang, Yu, and Wang 2018; Liu et al. 2021), they have also
been applied to several other domains including video game
content generation (Giacomello, Lanzi, and Loiacono 2018;
Volz et al. 2018). However, to the best of our knowledge,
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when it comes to generating level-based content for video
games, GANs have only been applied to discrete domains
with no physical constraints.

In this paper, we present an approach for generating stable
structures made of several rectangular blocks in a contin-
uous physical environment. More specifically, we generate
structures for use in the 2D physics-based puzzle game An-
gry Birds (Rovio 2023). This domain provides a unique and
novel challenge for applying GAN-based approaches, where
considerations such as the game’s continuous environment
space and physical constraints must be taken into account.
Our results demonstrate that such an approach is viable for
generating complete Angry Birds structures.

The remainder of this paper is organized as follows. We
first describe background details and prior work related to
GANs and their use in level generation, as well as previous
approaches to Angry Birds level generation. Next, we de-
scribe the methodology we employed with regards to level
encoding and decoding, as well as our GAN model training
process. We then describe our experiments, providing details
on how our specific GAN model was trained and analyze
the generated levels it was able to produce. We finish with a
summary conclusion of our approach and output, along with
suggestions for future work.

Background and Related Work
Generative Adversarial Networks
A GAN is a framework for producing generative models
via a process in which two networks, the generator and
the discriminator, are trained simultaneously (Goodfellow
et al. 2014). The generator aims to capture the data dis-
tribution of the training data, while the discriminator, also
called the critic, tries to differentiate between samples drawn
from the training data and samples generated by the gen-
erator. The generator is trained to maximize the probabil-
ity that the discriminator mistakes its generated example as
drawn from the actual distribution. The central concept be-
hind applying GANs is to define the given task as a game
between two opposing systems, which are then trained in
an adversarial manner to reach a zero-sum Nash equilibrium
(Moghadam et al. 2021). While GANs have been primarily
used for image synthesis (Goodfellow et al. 2014; Radford,
Metz, and Chintala 2016; Liu and Tuzel 2016; Karras et al.



2017; Huang, Yu, and Wang 2018), they have also been suc-
cessfully applied to many other applications including object
detection (Prakash and Karam 2021; Posilović et al. 2021),
natural language processing (Subramanian et al. 2017), au-
dio enhancement (Torres-Reyes and Latifi 2019; Biswas and
Jia 2020), anomaly detection (Schlegl et al. 2017; Xia et al.
2020), and, most relevant for this paper, video game level
generation.

In recent years, several variations and improvements to
GANs have been proposed for different aspects of the under-
lying framework. The architecture of each network, the con-
trollability, the training process, scaling, adaptation and ap-
plication in different domains are a few research directions
that have been investigated. Some notable advancements in-
clude the development of Deep Convolutional GANs (DC-
GANs) (Radford, Metz, and Chintala 2016), which intro-
duced deeper architectures and improved training stability
for image synthesis tasks. Another significant improvement
came with the introduction of Wasserstein GANs (WGANs)
(Arjovsky, Chintala, and Bottou 2017), which proposed a
new objective function to address training difficulties and
mode collapse issues (Salimans et al. 2016). The term mode
collapse refers to the situation where a GAN model repeat-
edly generates highly similar outputs that don’t represent the
variety of content present in the original training set.

Level Generation with GANs
While GANs have been used to generate a variety of differ-
ent types of game content, such as the generation of NPC
character sprites (Kim et al. 2023; Coutinho and Chaimow-
icz 2022), we will focus primarily on the use of GANs
to generate game levels. One of the first to apply GANs
in the context of level generation was Giacomello et al.,
in their work to generate DOOM level images based on
human-designed examples (Giacomello, Lanzi, and Loia-
cono 2018). They describe their preliminary results as a
good starting point for researching the viability of GANs
compared to classical PCG. The generated level images con-
tained DOOM typical features and are reportedly interesting
to explore, although the generated data could not be decoded
into playable levels.

Volz et al. also utilized GANs to generate complete Mario
levels (Volz et al. 2018). They use a Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES) to search the
latent space of the GANs generator to influence the outcome
based on different metrics over the generated levels. Their
first approach is to optimize different block distributions. For
example, fewer stone blocks could lead to an air level with
greater difficulty. In their second approach, they utilize a
Mario AI (Togelius et al. 2013) that can produce playthrough
data of their generated levels. They focused on optimizing
toward playable levels with a scalable difficulty. The idea of
using latent variable evolution (LVE) to explore the genera-
tor’s latent space was first introduced by Bontrager et al., in
their works to match generated fingerprints to as many real
fingerprints as possible (Bontrager, Togelius, and Memon
2017). Evolving the latent space to gain control over the out-
put stands in contrast to Conditional GANs (CGANs) (Mirza
and Osindero 2014), which utilize a condition vector com-

Figure 1: An example Angry Birds level containing five dis-
tinct structures.

Id Shape Name Dimensions

1 SquareHole (0.85, 0.85)

2 RectBig (2.06, 0.22)
3 RectMedium (1.68, 0.22)
4 RectSmall (0.85, 0.2)

5 RectFat (0.85, 0.43)

6 RectTiny (0.42, 0.22)
7 SquareTiny (0.22, 0.22)

8 SquareSmall (0.43, 0.43)

Table 1: Block types that are available in Science Birds.

bined with the noise vector as input to the generator to pro-
duce a controllable output. They conclude that GANs can
capture high-level structures of the training level, although
they may sometimes produce broken elements such as in-
complete pipes and structures.

Angry Birds Level Generation
Angry Birds is a 2D physics-based simulation game, where
players are tasked with shooting birds at structures made of
multiple smaller blocks. These blocks are each made of a
specific material (wood, ice or stone) which affects their re-
sistance to certain bird types. The players objective in each
level is to kill all of the pigs, which are often located within
or on top of structures, using a limited number of birds. An
example Angry Birds level, containing five structures and
nine pigs, is shown in Figure 1. Due to the fact that the orig-
inal Angry Birds game is not open source, most research on
Angry Birds instead uses a Unity-based clone of the game
called Science Birds, created by Lucas Ferreira (Ferreira and
Toledo 2014). This clone contains all the same elements as
the original Angry Birds game, and each level is described
in a single xml file containing the position of each object.



Table 1 shows the available block types that structures
can be made from, along with their names and dimensions
(width, height). While there are several additional “irreg-
ular” block shapes that are also available in Angry Birds,
specifically two triangular and two circular block types, the
vast majority of Angry Birds structures do not include these.
Many prior structure generators for Angry Birds either ex-
cluded irregular blocks entirely or used them in a purely dec-
orative manner, as the stability of a structure is much harder
to verify if irregular blocks are present. In addition to this,
blocks are almost always placed at 90-degree angles, once
again to reduce the risk of structural instability. As a result
of this, our proposed GAN-based generator will be solely
trained on, and will therefore only output, structures made
of the block types specified in Table 1, placed in either a
horizontal (angle = 0) or vertical (angle = 90) orientation.

Over the past decade a large number of different level gen-
erators for Angry Birds have been proposed, with many of
them being entered into the AIBirds Level generation com-
petition (Stephenson et al. 2019). These generators have ex-
perimented with a variety of different approaches, includ-
ing Genetic Algorithms (Ferreira and Toledo 2014), search-
based techniques (Stephenson and Renz 2016a,b, 2017),
Monte Carlo Tree Search (Graves, Caramanis, and Nagara-
jan 2016), and latent variable evolution in a variational auto
encoder (Tanabe et al. 2021), as well as focusing on a vari-
ety of different desirable aspects, such as levels that con-
tain structures which resemble quotes or formulas (Jiang,
Harada, and Thawonmas 2017), deceptive elements (Gam-
age et al. 2021), or Rube Goldberg Machine mechanisms
(Abdullah et al. 2019).

Methodology
This section describes the different components that make
up our proposed GAN framework for Angry Birds levels
generation. This includes level encoding, level decoding and
GAN Model Training.

Level Encoding
This section describes the encoding process that was used
to convert an XML level description of a structure into a
suitable grid-based data representation that can be used to
train our proposed GAN model.

Grid-Based Representation One of the major challenges
in this domain is the real-valued positioning and dimensions
of in-game objects. Continuous values such as these are im-
practical for GAN models, which typically require the input
to be in a discrete, grid-based representation to function ef-
fectively (e.g., the pixels of an image, or the individual tiles
in a Mario level). As a result, our XML structure represen-
tation first needs to be converted or encoded to a grid-based
representation with a specified degree of precision (i.e., a
raster size). Figure 2 shows an example of a simple Angry
Birds structure with continuous block positions and dimen-
sions, represented visually as a wireframe diagram with dif-
ferent colors for each block material and pigs, that will be
used as a reference throughout this section.

Figure 2: An example Angry Birds structure represented as
a colored wireframe diagram.

In order to discretize a structure to a specified level of
precision, a suitable raster size has to be chosen. A smaller
raster size better represents the blocks true dimensions, and
is able to capture small gaps and imperfect positionings that
a larger raster size may miss. The downside of a smaller
raster size is that it can dramatically increase the dimen-
sionality of the encoded structure representation, requiring a
larger GAN model that results in significantly longer train-
ing and generation times. Conversely, a bigger raster size re-
sults in a smaller encoded output representation where only
a few grid cells represent any given block. This comes with a
loss of finer details, that may potentially result in incorrectly
represented block sizes.

As a suitable compromise between these two considera-
tions, we selected the largest raster size that resulted in a
near-integer value when dividing by any block’s true dimen-
sion. This was done to reduce the risk of the same block type
being encoded at different sizes, depending on its relative
position to the grid lines. For the block sizes present in Sci-
enceBirds a raster size 0.07 resulted in quotients with only a
small remainder, and was subsequently chosen as our raster
size. This raster size of 0.07 in-game distance units, can be
equated to 1 unit of our proposed grid dimension encoding.

Using this chosen raster size, we can now convert any
given XML level description into a matching grid-based
encoding. For each block, the horizontal and vertical start
and end positions are calculated by taking the given cen-
ter position of the block and adding/subtracting half of the
width/height respectively. To transform these positions into
the grid indices, each value is divided by the raster size
(0.07) and rounded to the nearest integer. Doing this for each
object has the effect of converting its position and size to ex-
actly fit our defined grid dimensions. Figure 3 shows how the
example structure shown in Figure 2 can be converted using
this proposed encoding approach into a rasterized image.

One limitation with this structure encoding approach is
that number and size of the grid cells is fixed, which places
a bound on the maximum structure size that could be en-
coded. For our GAN model, we fixed our grid dimension at
128x128 cells or approximately 9x9 in-game distance units.
This can be increased to support larger structures if desired,
although this will naturally result in longer training and gen-
eration times.



Figure 3: An encoded (rasterized) 2D image of an Angry
Birds structure to a precision (resolution) of 0.07.

Multilayer Representation While it is possible to repre-
sent all four object types (wood/ice/stone blocks and pigs)
as different values (wood = 1, ice = 2, etc.) within a sin-
gle 2D grid representation, this makes training our GAN
model more difficult. With this representation approach, our
GAN model must simultaneously decide about the position-
ing of the elements and their material within a single layer.
Looking at prior work, GAN data representations are usu-
ally not only two-dimensional. For example, face synthesis
requires three channels for the RGB-Color space, and Volz
et al. (Volz et al. 2018) used ten channels in a one-hot en-
coding, one for each Mario block type. By moving each ob-
ject type to separate layers, the decision for each layer is
simplified to only predicting if an element of the associated
type is present. Figure 4 shows a visual representation of this
multilayer encoding approach for the same 2D image shown
in Figure 3. Using this multilayer representation splits the
blocks of each material type into separate layers, with pigs
and air (i.e., empty space) each getting their own layer as
well, making for a total of five layers.

Level Decoding
This section describes the inverse of the previous process,
that of taking a structure that is output by our trained GAN
model using our specified grid-based representation and de-
coding it into a valid XML level description for Science
Birds.

Confidence Decoding Most GAN-based approaches for
procedural content generation use an encoding method that
allows for a one-to-one decoding, meaning that no extra
steps are required to create the level. This can potentially
lead to broken elements, such as a pipe that may be missing
several tiles (Volz et al. 2018) and can be solved by encoding
the whole group of tiles together. The decoding process can
also include a healing section, where a post-processing algo-
rithm fixes errors, tests for playability and repairs the level
accordingly.

When using the multilayered encoding defined in the pre-
vious section our GAN outputs a real-valued matrix for each
object type, with each matrix having the same dimensions as
our defined grid representation. A value closer to one for a
given matrix entry represents a higher confidence that an ob-
ject of that type should be present in the corresponding grid

Figure 4: A multilayer representation of an Angry Birds
structure, with separate layers for each object type visual-
ized along the z-axis

cell, with a value close to one for the air layer represent-
ing that there should be no object present. In other words,
our output matrices represent the predicted confidence that
each GAN layer has for an object of its type being present
at any given grid cell. This multilayer representation can
be subsequently converted back into a flat 2D image using
the argmax operator, where the layer with the highest con-
fidence value output is used. However, simply determining
the object type for each grid cell will not be sufficient, as our
output XML representation can only include blocks of pre-
defined sizes. In other words, each block is encoded into, and
must also therefore be decoded from, multiple grid cells.

Matrix Creation To decode a generated structure image
back into a valid xml level description, we need to iden-
tify suitable block positions for each material that maintain
the structure’s overall design. The first step of our proposed
process involves the creation of a 3-dimensional Selection-
Ranking matrix, with dimensions 128x128x13. Each layer
of this matrix represents a specific block type, including sep-
arate layers for horizontal and vertical orientations of rectan-
gular block shapes, giving a total of 13 layers. Each of these
layers contains 128x128 values representing each position
of our encoded grid space, with the value at each position
indicating its suitability for placing a block of the associ-
ated type. This Selection-Ranking matrix is a combination
of two sub-matrices, called the Hit-Probabilities matrix and
the Size-Ranking matrix.

The Hit-Probabilities matrix for each layer is created by
applying a Gaussian kernel in the shape of the associated
block type across the encoded structure representation, see
Table 1. Each layer of this matrix represents how well the as-
sociated block type would match the encoded structure rep-
resentation if placed at each possible position (i.e., what is
the percentage of overlap between the block and the struc-
ture). However, using this matrix alone leads to an issue,
namely that smaller blocks (shown in the lower rows) will
have a much higher hit probability than larger blocks, sim-
ply due to their smaller size. If only the highest hit probabil-
ities were used in the selection process, any small imperfec-
tions in the representation would dismiss any larger block
types that may have been intended to be there, and a group



(a) Selection-Ranking matrix with no clipping (b) Selection-Ranking matrix with hit probabilites clipped at 0.98

Figure 5: Heatmap representations of the Selection-Ranking matrix for each block type, calculated based on the layer-wise
multiplication of the Hit-Probability matrix and Size-Ranking matrix. Subfigure (a) represents the original Selection-Ranking
matrix; while subfigure (b) represents the same Selection-Ranking matrix but with the Hit-Probabilities matrix clipped at 0.98.
Each image represents a specific block type and corresponds to an individual layer of the Selection-Ranking matrix. The value
above each image represents the maximum value present in this layer.

of smaller blocks would likely be used instead. To address
this, we introduced an additional Size-Ranking matrix that
applies a sum kernel to add up the values of all covered pix-
els for each block type at each location.

Using the encoded Angry Birds structure representation
from Figure 3 as our input, Figure 5a shows the layer-wise
multiplication of these two sub-matrices into the combined
Selection-Ranking matrix, where yellow areas represent lo-
cations where placing the associated block type would most
match the encoded structure representation. It can be seen in
Figure 5a that the horizontal RectBig layer has the highest
selection value (113.54), even though it crosses gaps in the
encoded structure image. By clipping our Hit-Probabilities
matrix at a high value, in this case 0.98, any block types that
cross gaps such as these are removed. In practice, this has the
effect of making our Selection-Ranking matrix more distinct
with harder edges, see Figure 5b, and ensures that any small
gaps in the original structure encoding are more likely to be
maintained in the decoded output. This final clipped version
of the Selection-Ranking matrix is then used as input for the
subsequent block selection algorithm.

Block Selection Our block selection algorithm starts by
identifying the highest value in our clipped Selection-
Ranking matrix, which corresponds to the “best fit” loca-
tion for a specific block type, see blue block outline for the
horizontal RectMedium layer in Figure 6a. We then place
a block of this type at this location and set any values in
our matrix that would overlap this block to zero, see red
outlines for the other block types/layers in Figure 6a. This
process repeats until all values in our matrix are set to zero.
The clipped Selection-Ranking matrix shown in Figure 5b

takes a total of 18 iterations for this process to finish, where
in each iteration a new block is selected and added to the
final structure output. Figure 6 shows several iterations of
the Selection-Ranking matrix throughout this block selec-
tion process. We then use a circular kernel to identify pos-
sible pig positions, followed by the same location selection
process.

The last step of the decoding process is to address the is-
sue of blocks slightly overlapping each other, which can oc-
cur when a block has an uneven width/height. We therefore
apply a small structure adjustment that moves each block up
and to the right, until it no longer overlaps any blocks that
are below it or on its left side.

The finished result of this decoding process can be seen
in Figure 7. By comparing this to the original structure rep-
resentation in Figure 2 we can see that there are some minor
differences between them, but the overall shape and design
of the structure is sufficiently similar. This example demon-
strates that our proposed encoding and decoding process is
able to successfully convert between playable XML level de-
scriptions, and grid-based structure representations that are
appropriate for GAN training.

GAN Training
With the encoding and decoding process now defined, this
section describes how our encoded structure representation
is processed and used for training our GAN model. In order
to train our GAN model, two aspects need to be selected.
Firstly, the specific architecture that will be used for the gen-
erator and discriminator networks. Secondly, the objective
function that will be used to update the weights in these net-
works towards a desirable output.



(a) Iteration 1 (b) Iteration 2

(c) Iteration 8 (d) Iteration 17

Figure 6: Heatmap representations of the clipped Selection-Ranking matrix for iterations 1, 2, 8 and 17 of the block selection
process. The block type (matrix layer) and location with the highest Selection-Ranking matrix value is chosen at the start of
each iteration (represented by the blue block outlines). Any values/positions in the Selection-Ranking matrix that are no longer
valid, due to overlapping this selected block, are set to zero for future iterations (represented by the red outlines). This process
repeats until all values in the Selection-Ranking matrix are equal to zero.

Figure 7: The result of the decoding process.

GAN Architecture Our proposed GAN model is based
on the Deep Convolutional Generative Adversarial Network
(DCGAN) architecture (Radford, Metz, and Chintala 2016).
This is the first Convolutional Neural Network based GAN
architecture and has been shown to perform well in image
generation tasks (Jabbar, Li, and Omar 2021). Compared to
a more standard GAN architecture, which only used fully
connected layers and pooling layers, the proposed DCGAN
architecture instead uses transposed convolutions to create
the required image size.

The generator network portion of our proposed GAN is
shown in Figure 8. This network exclusively uses transposed
convolutional layers to enlarge the image, with a stride value
of two effectively doubling the resolution size with each



Figure 8: Generator network architecture.

Figure 9: Discriminator network architecture.

layer block, as this has been shown to significantly improve
the stability of GAN training (Jabbar, Li, and Omar 2021).
The standard batch normalization layers were instead re-
placed by layer normalization (Ba, Kiros, and Hinton 2016),
to reduce the risk of mode collapse during training. The gen-
erator uses the ReLU activation function (Nair and Hinton
2010) between the layers and a Tanh function at the output
layer, similar to the original implementation by Goodfellow
et al. (Goodfellow et al. 2014).

The discriminator network is visualized in Figure 9.
While the generator uses transposed convolutional layers,
the discriminator uses convolutional layers to reduce the im-
age size and arrive at a decision. The discriminator uses a
Leaky ReLU activation function (Xu et al. 2015), based on
the recommendation by Radford et al. in their architecture
guidelines for stable Deep Convolutional GANs (Radford,
Metz, and Chintala 2016).

Objective Function For our objective function, we de-
cided to use the Wasserstein objective function that is based
on the Wasserstein or Earth Mover’s distance metric (Ar-
jovsky, Chintala, and Bottou 2017). This approach provides
several benefits, including increased training stability and
reduced risk of mode collapse. In addition, we use an up-
dated version of this objective function that applies a gra-
dient penalty to the discriminator network (Gulrajani et al.
2017), rather than the regular weight clipping approach. This
change has been shown to further increase GAN training sta-
bility and convergence likelihood.

Experiments
Our experiments consisted of training the proposed GAN
model on an example set of encoded levels descriptions, as
well as evaluating the quality and variety of output struc-
tures that it was able to produce. The complete set of all
generated levels, as well as our fully trained GAN model, is
open access and can be downloaded from a public GitHub
repository1.

Model Training
Due to the limited number of human-made levels that are
currently available for Science Birds, we decided to use the
open-source level generator Iratus Aves (Stephenson and
Renz 2017) to provide structures for our training dataset.
Using this generator, we created an initial training dataset
of 5000 XML level descriptions that each define a single
structure (including pigs).

One important consideration when training GANs is to
ensure that the training dataset is sufficiently balanced in
terms of its content diversity, as this can reduce the risk of
mode collapse occurring. To achieve this, we applied a fil-
ter to remove any overly similar structures from our training
dataset, which in turn would increase the average structure
diversity. We first applied a metadata filter to remove any
structures with the same number of blocks for each mate-
rial, as well as the same width and height with a 0.1 unit
margin. We next applied a shape filter to remove any struc-

1https://github.com/Blaxzter/Utilizing-Generative-Adversarial-
Networks-for-Stable-Structure-Generation-in-Angry-Birds



Figure 10: Example GAN outputs and corresponding decoded Angry Birds structures.

tures with the same encoding outline, regardless of block
shape or material type. After applying both these filters, our
training dataset size was reduced from 5000 to 3566.

Our GAN model was trained for 15000 epochs on our fil-
tered training dataset of 3566 generated structures. This was
performed using the RWTH High-Performance Computing
cluster (Aachen 2023) and took approximately 48 hours to
complete.

Results
Our trained GAN model was used to generate 8000 differ-
ent structure representations, which were then decoded into
playable XML level descriptions. This process took around
15 minutes on a desktop computer with an Intel i7-5820k
CPU, with over 95% of that time being used for structure
decoding. Figure 10 displays several of these GAN gener-
ated structure representation outputs, along with their de-
coded XML level descriptions loaded into Science Birds.
Based on these examples, we can see that many of the GAN
outputs contained small distortions or noise that makes the
type or shape of certain blocks ambiguous. Despite this, our
proposed decoding approach can typically handle these mi-

nor imperfections and is able to produce reasonably accurate
and complete structures for Angry Birds.

Structure Stability The first test we conducted was to in-
vestigate how many of our 8000 generated structures were
stable when loaded into the Science Birds game engine.
The stability of any given structure can be determined us-
ing one of two approaches. The “Block Velocity” measure
determines that a structure is stable if all blocks are station-
ary when the level is loaded. The “Block Destruction” mea-
sure determines that a structure is stable if no blocks are de-
stroyed after the level is loaded. Blocks in Angry Birds will
typically be destroyed if they fall from a sufficient height
or collide with other blocks, meaning that this measure of
stability is a good test for if a structure has collapsed.

Using the Block Velocity measure, 945 structures would
be classified as stable and 7055 as unstable. Using the Block
Destruction measure, 3487 structures would be classified as
stable and 4533 as unstable. Please note, that the Block De-
struction measure is a strictly weaker version of the Block
Velocity measure (i.e., any structure which is classified as
stable by the Block Velocity measure is also always classi-



Id Name Frequency
1 SquareHole 8.75% (±5.89%)
2h RectBig 5.89% (±3.20%)
2v RectBig (Vert) 13.46% (±10.21%)
3h RectMedium 4.14% (±2.13%)
3v RectMedium (Vert) 5.91% (±4.26%)
4h RectSmall 4.18% (±2.05%)
4v RectSmall (Vert) 7.33% (±5.24%)
5h RectFat 5.11% (±2.81%)
5v RectFat (Vert) 15.81% (±16.84%)
6h RectTiny 6.84% (±4.12%)
6v RectTiny (Vert) 6.99% (±4.90%)
7 SquareTiny 9.04% (±5.95%)
8 SquareSmall 6.55% (±4.56%)

Table 2: Average frequency of each block type across all
8000 generated structures (±SD).

fied as stable by the Block Destruction measure). This large
disparity would indicate that, while our generated structures
often contain blocks that move slightly after loading, they
are much less likely to collapse completely.

Structure Diversity With regards to structure diversity,
our generated structures varied significantly in terms of their
width, height, density, shape and block frequency. Across
all 8000 generated structures, the average width was 4.87
(±0.87) and the average height was 3.67 (±1.36). The aver-
age density of each structure, calculated as the percentage
of the available level space that is occupied by an object,
was 37.05% (±10.56%). The average number of blocks was
24.01 (±10.18), with an exact break down by block type and
orientation provided in Table 2. For reference, please refer
to Table 1 for the dimensions of each block type. The aver-
age number of pigs in each structure was 2.76 (±1.76), with
9.1% of generated structures containing zero pigs. While
this may initially seem like a serious problem, given that
a level with no pigs is already solved, it is important to re-
member that our proposed approach is intended to create sin-
gle structures rather than complete levels. Structures without
pigs can therefore still be included within a level, as long as
they are placed alongside one or more structures that do con-
tain pigs. There was also very little difference between any
of these values when comparing stable and unstable struc-
tures separately.

In terms of creating new and novel structure designs,
while our generated structures appear to have several sim-
ilar design elements to those present in the original training
dataset, which is to be expected of a GAN based approach,
they also have many differences. For example, the structures
produced by the Iratus Aves generator are created using rows
of blocks with the same height, leading to highly symmetri-
cal designs (Stephenson and Renz 2017). However, this was
not the case for many of our GAN generated structures, such
as those shown in the bottom left and top right examples for
Figure 10.

Conclusion
In this paper we have presented, implemented, trained, and
evaluated a framework for using GANs to generate new
structures for Angry Birds. One of the main contributions of
this paper is the proposed encoding and decoding process,
that can accurately convert between a playable XML level
description and a grid-based structure representation more
suited for GANs. Using this in conjunction with state-of-the-
art GAN architectures, we were able to successfully train a
GAN model to produce complete and highly varied struc-
ture designs. While many of these generated structures were
initially stable, some of them unfortunately collapsed when
loaded into our simulation engine. However, the number of
unstable structures was not overwhelmingly large, and such
structures could easily be discarded after generation via a
simple generate-and-test approach. As such, we believe that
the use of GAN models to generate Angry Birds structures
may be used to provide an abundance of both new training
content for AI agents and gameplay experiences for human
players.

We would also like to highlight that this paper is a
condensed version of an original Masters thesis (Abraham
2022). This paper describes the most successful approach
from this thesis, but several alternative encoding/decoding
approaches were also investigated. We would encourage in-
terested readers to take a closer look at this thesis for more
details.

In terms of future work, one of the first extensions we
might make is to train our proposed model on a larger range
of content. Our experimental training set contained 3566
structures from a single generator, but there are over a dozen
different level generators for Angry Birds that have been
proposed during the past decade. Utilizing several of these
generators could provide a much more diverse set of training
levels, and potentially a more varied range of output struc-
tures. Beyond this, we could also experiment with different
GAN architectures, stable diffusion models, data representa-
tions, or improvements to our encoding/decoding processes.
Lastly, this approach could be applied to other physics-based
domains beyond Angry Birds.
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